Homework 5, Math 401

due on March 8, 2021

Before you start, please read the syllabus carefully.

- 1. For any ring R, prove that there exists a unique ring homomorphism from \mathbb{Z} to R.
- 2. Find the number of group homomorphisms from A to B, and the number of ring homomorphisms from A to B (Just numbers.)
 - (a) $A = \mathbb{Z}, B = C_6$
 - (b) $A = C_6, B = \mathbb{Z}$
 - (c) $A = C_6, B = C_3$
 - (d) $A = C_3, B = C_6$
- 3. Let a be a rational number and define $f : \mathbb{Q}[x] \to \mathbb{Q}$ to be f(g(x)) = g(a). Prove that f is a ring homomorphism.
- 4. Let R be a ring and S be a subset of R. We define the ideal generated by S to be the smallest ideal containing S.
 - (a) Prove that $\langle 1 \rangle = R$.
 - (b) Prove that $\langle S \rangle = \{ \sum_{i \leq N} r_i s_i t_i \mid r_i, t_i \in R, s_i \in S \}.$
- 5. For the ring of integers, denote $I = \langle 5 \rangle$, and $J = \langle 3 \rangle$
 - (a) Prove that the ideal generated by n is $\langle n \rangle = \{kn \mid k \in \mathbb{Z}\}.$
 - (b) Compute I + J, $I \cdot J$ and $I \cap J$.
- 6. For the ring of integers:
 - (a) Prove that any subgroup of $(\mathbb{Z}, +)$ is cyclic. (Hint: Use the fact that if gcd(a, b) = d, then $\exists s, t \in \mathbb{Z}$ such that as + bt = d).
 - (b) Prove that any subgroup of $(\mathbb{Z}, +)$ is also an ideal of $(\mathbb{Z}, +, \times)$.