Homework 5, Math 401

due on March 8, 2021

Before you start, please read the syllabus carefully.

1. For any ring R, prove that there exists a unique ring homomorphism from \mathbb{Z} to R.
2. Find the number of group homomorphisms from A to B, and the number of ring homomorphisms from A to B (Just numbers.)
(a) $A=\mathbb{Z}, B=C_{6}$
(b) $A=C_{6}, B=\mathbb{Z}$
(c) $A=C_{6}, B=C_{3}$
(d) $A=C_{3}, B=C_{6}$
3. Let a be a rational number and define $f: \mathbb{Q}[x] \rightarrow \mathbb{Q}$ to be $f(g(x))=g(a)$. Prove that f is a ring homomorphism.
4. Let R be a ring and S be a subset of R. We define the ideal generated by S to be the smallest ideal containing S.
(a) Prove that $\langle 1\rangle=R$.
(b) Prove that $\langle S\rangle=\left\{\sum_{i \leq N} r_{i} s_{i} t_{i} \mid r_{i}, t_{i} \in R, s_{i} \in S\right\}$.
5. For the ring of integers, denote $I=\langle 5\rangle$, and $J=\langle 3\rangle$
(a) Prove that the ideal generated by n is $\langle n\rangle=\{k n \mid k \in \mathbb{Z}\}$.
(b) Compute $I+J, I \cdot J$ and $I \cap J$.
6. For the ring of integers:
(a) Prove that any subgroup of $(\mathbb{Z},+)$ is cyclic.
(Hint: Use the fact that if $\operatorname{gcd}(a, b)=d$, then $\exists s, t \in \mathbb{Z}$ such that $a s+b t=d$).
(b) Prove that any subgroup of $(\mathbb{Z},+)$ is also an ideal of $(\mathbb{Z},+, \times)$.
