Homework 6, Math 401

due on March 15, 2021

Before you start, please read the syllabus carefully.

1. Prove that $x^{4}+1$ is irreducible in $\mathbb{Q}[x]$.
2. Let $f(x) \in F[x]$ be a polynomial with coefficient in a field F. Prove that for any $a \in F$, $x-a \mid f(x)$ if and only if $f(a)=0$.
3. Prove that $\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}$ forms a field under usual addition and multiplication for real numbers.
4. Let $f(x)=x^{4}-3 x^{2}+2$ and $g(x)=x^{3}-1$. Compute $\operatorname{gcd}(f(x), g(x))$, and find $s(x)$ and $t(x)$ in $\mathbb{Q}[x]$ such that $f(x) s(x)+g(x) t(x)=\operatorname{gcd}(f(x), g(x))$.
5. Consider the ring of polynomials $C_{5}[x]$ where the coefficient is C_{5}. Let $f(x)=x^{4}+x^{2}+1$ and $g(x)=x^{2}+2$, find $q(x)$ and $r(x)$ in $C_{5}[x]$ such that

$$
f(x)=g(x) q(x)+r(x), \operatorname{deg}(r(x))<\operatorname{deg}(g(x)) .
$$

