Homework 7, Math 401

due on March 22, 2021

Before you start, please read the syllabus carefully.

1. Let $f(x)=x^{p-1}+x^{p-2}+\cdots+x+1 \in \mathbb{Q}[x]$. Prove that $f(x)$ is irreducible if and only if p is a prime number.
2. Let R be a commutative ring and I be an ideal. Prove that there is a bijection between ideals of R / I and ideals of R containing I.
3. Let $R=\mathbb{Z} /\left\langle p^{k}\right\rangle$ be a quotient ring, where p is a prime number and $k \geq 1$ is an integer. Find out all ideals of this ring R.
4. Let p be a prime. Prove that $(a+b)^{p}=a^{p}+b^{p} \in C_{p}$, and $(f(x)+g(x))^{p}=f(x)^{p}+g(x)^{p} \in$ $C_{p}[x]$.
(Hint: Prove that $p \left\lvert\,\binom{ p}{k}\right.$ for $1 \leq k \leq p-1$.)
5. Let $f(x)=x^{p-1}+x^{p-2}+\cdots+x+1 \in C_{p}[x]$. Find a decomposition of $f(x)$ into a product of irreducible polynomials.
6. Find the minimal polynomial of $\alpha=(1+\sqrt{2})^{1 / 3}$ in $\mathbb{Q}[x]$.
7. Find the minimal polynomial of $\sqrt{2}$ in $C_{5}[x]$ and $C_{7}[x]$.
8. Prove that $C_{5}[x] /\left\langle x^{2}-3\right\rangle$ is a field, and then count the number of elements in $C_{5}[x] /\left\langle x^{2}-3\right\rangle$.
