Homework 8, Math 401

due on March 29, 2021

Before you start, please read the syllabus carefully.

- 1. Prove that the only ideal in a field F is 0 and F itself.
- 2. Prove that if $K \subset F$ is a field extension with [F:K] = 1, then F = K.
- 3. Denote $K = \mathbb{Q}[\sqrt{2} + \sqrt{5}] \subset \mathbb{C}$.
 - (a) Prove that $K \subset F := \mathbb{Q}[\sqrt{2}][\sqrt{5}]$ (i.e. F is a field extension of $\mathbb{Q}[\sqrt{2}]$).
 - (b) Determine $[F:\mathbb{Q}]$.
 - (c) Denote $\alpha = \sqrt{2} + \sqrt{5}$. Find the minimal polynomial of α .
 - (d) Prove that $1, \alpha, \alpha^2, \alpha^3$ are linearly independent over \mathbb{Q} .
 - (e) Write α^4 as a linear combination of $\{1, \alpha, \alpha^2, \alpha^3\}$, i.e., find $a, b, c, d \in \mathbb{Q}$ such that

$$\alpha^4 = a + b\alpha + c\alpha^2 + d\alpha^3$$

- (f) Prove that $\mathbb{Q}[x]/\langle f(x)\rangle \simeq K$ where $f(x) = x^4 (a + bx + cx^2 + d^3)$.
- (g) Prove that $\{1, \alpha, \alpha^2, \alpha^3\}$ is a basis for K as a vector space over \mathbb{Q} .
- (h) Prove that K = F.
- 4. Let $f(x) = x^2 2 \in \mathbb{F}_5[x]$, and denote K to be the splitting field of f(x).
 - (a) Determine $[K : \mathbb{F}_5]$.
 - (b) Let $g(x) = x^2 3 \in K[x]$. Determine whether g(x) is irreducible in K[x], if yes, give a proof, if not, find its decomposition.
- 5. For an arbitrary field F, we define a formal operation on $f(x) \in F[x]$ called *derivative* as following

$$f'(x) := \sum_{n} a_n \cdot n \cdot x^{n-1},$$

if $f(x) = \sum_{n} a_n \cdot x^n$.

(a) Prove that

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x),$$

for F[x] for arbitrary field F.

(b) Prove that if f(x) has a multiple root α , equivalently $(x - \alpha)^2 | f(x)$), then α is also a root of f'(x).

- (c) Does the converse from above holds? i.e., if $f'(\alpha) = 0$, does it imply that α is a multiple root f(x)? If yes, give a proof, if no, give a counter example or give a correct statement.
- (d) (Warning: the following statement is only true when F has characteristic 0) Prove that $f(\alpha) = f'(\alpha) = \cdots = f^{(k)}(\alpha) = 0$ if and only if $(x - \alpha)^{k+1} | f(x)$ for f(x) in polynomial ring F[x] where F is an arbitrary field. (Does this remind you of Taylor expansion in calculus?)
- 6. (Bonus Question) Let L/F be field extension, and E is the subset of algebraic elements in L over F.
 - (a) Prove that E is a field extension of F. (Hint: prove that if a and b are both algebraic, then a + b and ab are also algebraic.)
 - (b) Prove that if L is algebraic closed, then E is the algebraic closure of F. (Hint: prove E is algebraic, and then prove it is algebraically closed.)