Homework 8, Math 401

due on March 29, 2021

Before you start, please read the syllabus carefully.

1. Prove that the only ideal in a field F is 0 and F itself.
2. Prove that if $K \subset F$ is a field extension with $[F: K]=1$, then $F=K$.
3. Denote $K=\mathbb{Q}[\sqrt{2}+\sqrt{5}] \subset \mathbb{C}$.
(a) Prove that $K \subset F:=\mathbb{Q}[\sqrt{2}][\sqrt{5}]$ (i.e. F is a field extension of $\mathbb{Q}[\sqrt{2}]$).
(b) Determine $[F: \mathbb{Q}]$.
(c) Denote $\alpha=\sqrt{2}+\sqrt{5}$. Find the minimal polynomial of α.
(d) Prove that $1, \alpha, \alpha^{2}, \alpha^{3}$ are linearly independent over \mathbb{Q}.
(e) Write α^{4} as a linear combination of $\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$,i.e., find $a, b, c, d \in \mathbb{Q}$ such that

$$
\alpha^{4}=a+b \alpha+c \alpha^{2}+d \alpha^{3} .
$$

(f) Prove that $\mathbb{Q}[x] /\langle f(x)\rangle \simeq K$ where $f(x)=x^{4}-\left(a+b x+c x^{2}+d^{3}\right)$.
(g) Prove that $\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$ is a basis for K as a vector space over \mathbb{Q}.
(h) Prove that $K=F$.
4. Let $f(x)=x^{2}-2 \in \mathbb{F}_{5}[x]$, and denote K to be the splitting field of $f(x)$.
(a) Determine $\left[K: \mathbb{F}_{5}\right]$.
(b) Let $g(x)=x^{2}-3 \in K[x]$. Determine whether $g(x)$ is irreducible in $K[x]$, if yes, give a proof, if not, find its decomposition.
5. For an arbitrary field F, we define a formal operation on $f(x) \in F[x]$ called derivative as following

$$
f^{\prime}(x):=\sum_{n} a_{n} \cdot n \cdot x^{n-1},
$$

if $f(x)=\sum_{n} a_{n} \cdot x^{n}$.
(a) Prove that

$$
(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

for $F[x]$ for arbitrary field F.
(b) Prove that if $f(x)$ has a multiple root α, equivalently $\left.(x-\alpha)^{2} \mid f(x)\right)$, then α is also a root of $f^{\prime}(x)$.
(c) Does the converse from above holds? i.e., if $f^{\prime}(\alpha)=0$, does it imply that α is a multiple root $f(x)$? If yes, give a proof, if no, give a counter example or give a correct statement.
(d) (Warning: the following statement is only true when F has characteristic 0) Prove that $f(\alpha)=f^{\prime}(\alpha)=\cdots=f^{(k)}(\alpha)=0$ if and only if $(x-\alpha)^{k+1} \mid f(x)$ for $f(x)$ in polynomial ring $F[x]$ where F is an arbitrary field. (Does this remind you of Taylor expansion in calculus?)
6. (Bonus Question) Let L / F be field extension, and E is the subset of algebraic elements in L over F.
(a) Prove that E is a field extension of F.
(Hint: prove that if a and b are both algebraic, then $a+b$ and $a b$ are also algebraic.)
(b) Prove that if L is algebraic closed, then E is the algebraic closure of F.
(Hint: prove E is algebraic, and then prove it is algebraically closed.)

