Homework 9, Math 401

due on April 5, 2021

Before you start, please read the syllabus carefully.

- 1. Find all ring homomorphisms from \mathbb{F}_p to \mathbb{F}_p .
- 2. (a) Prove that $\pi : x \to x^p$ is a ring isomorphism from \mathbb{F}_q to \mathbb{F}_q where $q = p^k$ and p is a prime number.
 - (b) Prove that for any integer $1 \le r \le k$, π^r (*r*-th composition with itself): $\mathbb{F}_q \to \mathbb{F}_q$ is also a ring isomorphism.
 - (c) Prove that $\operatorname{Aut}(\mathbb{F}_9/\mathbb{F}_3) = C_2$.
- 3. Find a decomposition of $x^q x \in \mathbb{F}_p[x]$ when $q = p^2$ for a prime number p.
- 4. Let $f(x) \in F[x]$ be irreducible with degree n.
 - (a) If f(x) and f'(x) are relatively prime, prove that f(x) has no repeated roots.
 - (b) If char(F) = 0, prove that f'(x) has degree n-1 and f(x) and f'(x) are relatively prime.
 - (c) If $F = \mathbb{F}_p$, prove that f(x) has no repeated roots. (Hint:Consider the splitting field of f(x))
- 5. Prove that $\mathbb{Q}[\mu_3 + 2^{1/3}] = \mathbb{Q}[\mu_3, 2^{1/3}].$