Homework 9, Math 401

due on April 5, 2021

Before you start, please read the syllabus carefully.

1. Find all ring homomorphisms from \mathbb{F}_{p} to \mathbb{F}_{p}.
2. (a) Prove that $\pi: x \rightarrow x^{p}$ is a ring isomorphism from \mathbb{F}_{q} to \mathbb{F}_{q} where $q=p^{k}$ and p is a prime number.
(b) Prove that for any integer $1 \leq r \leq k, \pi^{r}$ (r-th composition with itself): $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is also a ring isomorphism.
(c) Prove that $\operatorname{Aut}\left(\mathbb{F}_{9} / \mathbb{F}_{3}\right)=C_{2}$.
3. Find a decomposition of $x^{q}-x \in \mathbb{F}_{p}[x]$ when $q=p^{2}$ for a prime number p.
4. Let $f(x) \in F[x]$ be irreducible with degree n.
(a) If $f(x)$ and $f^{\prime}(x)$ are relatively prime, prove that $f(x)$ has no repeated roots.
(b) If $\operatorname{char}(F)=0$, prove that $f^{\prime}(x)$ has degree $n-1$ and $f(x)$ and $f^{\prime}(x)$ are relatively prime.
(c) If $F=\mathbb{F}_{p}$, prove that $f(x)$ has no repeated roots.
(Hint:Consider the splitting field of $f(x)$)
5. Prove that $\mathbb{Q}\left[\mu_{3}+2^{1 / 3}\right]=\mathbb{Q}\left[\mu_{3}, 2^{1 / 3}\right]$.
