Homework 1, Math 3000

due on Jan 18, 2022

Before you start, please read the syllabus carefully.

1. Solve the following linear systems.

(a)	$\begin{cases} 3x + 2y = 7\\ 7x + 5y = 17 \end{cases}$
(b)	$\begin{cases} x + 2y + 3z = 6\\ 2x + 3y + z = 6\\ 3x + y + 2z = 6 \end{cases}$
(c)	$\begin{cases} x + 2y = 5\\ 2x + y = 4 \end{cases}$
(d)	$\begin{cases} x+y=3\\ y+z=0\\ x+z=1 \end{cases}$
(e)	$\begin{cases} x+y+2z = 1 \\ \\ y+z = 0 \\ x+z = 1 \end{cases}$
	x + y + 2z = 2

- 2. Determine for what value of $a \ b \ c$ and d the following linear systems have at least one solution. Then determine for what value of $a \ b \ c$ and d the following linear systems have infinitely many solutions.
 - (a) ax = 0.(b) ax = 1.

(c)
(d)

$$\begin{cases}
ax + by = 0 \\
cx + dy = 0
\end{cases}$$

$$\begin{cases}
ax + by = 1 \\
cx + dy = 2
\end{cases}$$

3. Fix the value of a, b, c and d. Prove that if (x_0, y_0) is a solution for the linear system in Ex. 2(c) and (x_1, y_1) is a solution for the linear system in Ex. 2(d), then $(x_0 + x_1, y_0 + y_1)$ is also a solution for 2(d).