Homework 1, Math 3000

due on Jan 18, 2022

Before you start, please read the syllabus carefully.

1. Solve the following linear systems.
(a)

$$
\left\{\begin{array}{l}
3 x+2 y=7 \\
7 x+5 y=17
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{l}
x+2 y+3 z=6 \\
2 x+3 y+z=6 \\
3 x+y+2 z=6
\end{array}\right.
$$

(c)

$$
\left\{\begin{aligned}
x+2 y & =5 \\
2 x+y & =4 \\
x+y & =3
\end{aligned}\right.
$$

(d)

$$
\left\{\begin{aligned}
y+z & =0 \\
x+z & =1 \\
x+y+2 z & =1
\end{aligned}\right.
$$

(e)

$$
\left\{\begin{aligned}
y+z & =0 \\
x+z & =1 \\
x+y+2 z & =2
\end{aligned}\right.
$$

2. Determine for what value of $a b c$ and d the following linear systems have at least one solution. Then determine for what value of $a b c$ and d the following linear systems have infinitely many solutions.
(a)

$$
a x=0 .
$$

(b)

$$
a x=1 .
$$

(c)

$$
\left\{\begin{array}{l}
a x+b y=0 \\
c x+d y=0
\end{array}\right.
$$

(d)

$$
\left\{\begin{array}{l}
a x+b y=1 \\
c x+d y=2
\end{array}\right.
$$

3. Fix the value of a, b, c and d. Prove that if $\left(x_{0}, y_{0}\right)$ is a solution for the linear system in Ex. 2(c) and $\left(x_{1}, y_{1}\right)$ is a solution for the linear system in Ex. 2(d), then $\left(x_{0}+x_{1}, y_{0}+y_{1}\right)$ is also a solution for $2(d)$.
