Homework 10, Math 3000

due on April 12, 2022

Before you start, please read the syllabus carefully.

- 1. Let $V := \{a_0 + a_1t + a_2t^2 + a_3t^3 \mid a_i \in \mathbb{R}\}$ be the vector space of polynomials with degree smaller or equal to 3. We define a new dot product for V to be $f * g := \int_0^1 (f \cdot g) dt$. For example $t * t^2 = \int_0^1 t^3 dt = 1/4$.
 - (a) Compute $t^i * t^j$.
 - (b) Apply Gram-Schmidt to find an orthonormal basis for V with respect to *. Hint: replace $u \cdot v$ by f * g in Gram-Schmidt.
- 2. Let $V = \mathbb{R}^3$, and $W_1 := \operatorname{span}((1,0,1), (0,1,0))$ and $W_2 := \operatorname{span}((0,0,1))$.
 - (a) Show that $W_1 \cap W_2 = 0$.
 - (b) Show that $W_1 \oplus W_2 = V$.
- 3. Let U be the subspace of \mathbb{R}^3 be spanned by (1, 1, 1).
 - (a) Determine elements of the quotient space $Q = \mathbb{R}^3/U$.
 - (b) Find all (a, b, c) such that (a, b, c) + U contains the origin.
 - (c) Determine the dimension of Q.
- 4. Let V be the vector space of polynomials with degree smaller or equal to n.
 - (a) Let W be the set of polynomials where $a_i = 0$ for $i \leq 2$. Prove that W is a subspace.
 - (b) Simplify $(1+t)^{100} + W$ in the quotient space V/W.
- 5. Let $V = M_{n \times n}(\mathbb{R})$. Let $T : V \to V$ be the map T(X) = AX XA where A is a fixed matrix.
 - (a) Show that $W := \{X \mid tr(X) = 0\}$ is an invariant space for T.
 - (b) Find a basis of W and determine the dimension of W.
 - (c) For n = 2 and

$$A = \left(\begin{array}{cc} 1 & 2\\ 0 & 1 \end{array}\right),$$

write down the matrix for T with respect to the basis you have chosen for the last question.

- 6. Let $V = \mathbb{R}^2$ and $W_1 := \operatorname{span}(\mathbf{u})$ where $\mathbf{u} = (1, 2)$.
 - (a) Let $T: V \to V$ be the map that $T(\mathbf{v}) = \operatorname{Proj}_{\mathbf{u}}(\mathbf{v})$. Determine $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.

(b) Prove that $\mathbb{R}^2 = \operatorname{Ker}(T) \oplus \operatorname{Im}(T)$.

7. Let

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

Find all generalized eigenvectors of A.