Homework 10, Math 3000

due on April 12, 2022

Before you start, please read the syllabus carefully.

1. Let $V:=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \mid a_{i} \in \mathbb{R}\right\}$ be the vector space of polynomials with degree smaller or equal to 3 . We define a new dot product for V to be $f * g:=\int_{0}^{1}(f \cdot g) d t$. For example $t * t^{2}=\int_{0}^{1} t^{3} d t=1 / 4$.
(a) Compute $t^{i} * t^{j}$.
(b) Apply Gram-Schmidt to find an orthonormal basis for V with respect to $*$. Hint: replace $u \cdot v$ by $f * g$ in Gram-Schmidt.
2. Let $V=\mathbb{R}^{3}$, and $W_{1}:=\operatorname{span}((1,0,1),(0,1,0))$ and $W_{2}:=\operatorname{span}((0,0,1))$.
(a) Show that $W_{1} \cap W_{2}=0$.
(b) Show that $W_{1} \oplus W_{2}=V$.
3. Let U be the subspace of \mathbb{R}^{3} be spanned by $(1,1,1)$.
(a) Determine elements of the quotient space $Q=\mathbb{R}^{3} / U$.
(b) Find all (a, b, c) such that $(a, b, c)+U$ contains the origin.
(c) Determine the dimension of Q.
4. Let V be the vector space of polynomials with degree smaller or equal to n.
(a) Let W be the set of polynomials where $a_{i}=0$ for $i \leq 2$. Prove that W is a subspace.
(b) Simplify $(1+t)^{100}+W$ in the quotient space V / W.
5. Let $V=M_{n \times n}(\mathbb{R})$. Let $T: V \rightarrow V$ be the map $T(X)=A X-X A$ where A is a fixed matrix.
(a) Show that $W:=\{X \mid \operatorname{tr}(X)=0\}$ is an invariant space for T.
(b) Find a basis of W and determine the dimension of W.
(c) For $n=2$ and

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

write down the matrix for T with respect to the basis you have chosen for the last question.
6. Let $V=\mathbb{R}^{2}$ and $W_{1}:=\operatorname{span}(\mathbf{u})$ where $\mathbf{u}=(1,2)$.
(a) Let $T: V \rightarrow V$ be the map that $T(\mathbf{v})=\operatorname{Proj}_{\mathbf{u}}(\mathbf{v})$. Determine $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.
(b) Prove that $\mathbb{R}^{2}=\operatorname{Ker}(T) \oplus \operatorname{Im}(T)$.
7. Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Find all generalized eigenvectors of A.

