Homework 2, Math 3000

due on Jan 25, 2022

Before you start, please read the syllabus carefully.

- 1. Denote the vectors $\mathbf{u} = (2,1,0)$, $\mathbf{v} = (1,2,1)$ and $\mathbf{w} = (0,1,2)$ in \mathbb{R}^3 . Compute the following:
 - (a) 2u + 3v;
 - (b) $\mathbf{u} \cdot (\mathbf{u} + \mathbf{v});$
 - (c) The length of \mathbf{u} , \mathbf{v} .
 - (d) The side length of the triangle formed by \mathbf{u} and \mathbf{v} with two of the sides;
 - (e) The projection of **u** along **v**;
 - (f) Decompose \mathbf{u} into a sum of two vectors \mathbf{u}_{\perp} and \mathbf{u}_{\parallel} with respect to \mathbf{v} (i.e. $\mathbf{u} = \mathbf{u}_{\perp} + \mathbf{u}_{\parallel}$ and $\mathbf{u}_{\perp} \perp \mathbf{v}$ and $\mathbf{u}_{\parallel} \parallel \mathbf{v}$).
 - (g) The area of the triangle formed by \mathbf{u} and \mathbf{v} with two of the sides;
 - (h) Find all x, y and z such that the vector $(1, 2, 3) = x\mathbf{u} + y\mathbf{v} + z\mathbf{w}$;
 - (i) Find all vectors ${\bf q}$ such that ${\bf q}$ is perpendicular to both ${\bf u}$ and ${\bf v}.$
 - (j) Write down the equation of the plane that is perpendicular to **u** and passing through the origin (0, 0, 0) in \mathbb{R}^3 .
- 2. For the following matrix, determine whether they are in its row echelon form.
 - (a)

	$\left(\begin{array}{rrrr} 2 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$
(b)	$\left(\begin{array}{rrrr} 2 & 3 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$
(c)	$\left(\begin{array}{rrrr} 0 & 3 & 4 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right)$
(d)	$\left(\begin{array}{rrrr} 2 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)$

(e)

$$\left(\begin{array}{rrrr} 2 & 3 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

3. For each linear system in Ex. 1 in HW 1, write it in the matrix form $A\mathbf{x} = \mathbf{b}$. And for each matrix A, determine its reduced row echelon form.