Homework 2, Math 3000

due on Jan 25, 2022

Before you start, please read the syllabus carefully.

1. Denote the vectors $\mathbf{u}=(2,1,0), \mathbf{v}=(1,2,1)$ and $\mathbf{w}=(0,1,2)$ in \mathbb{R}^{3}. Compute the following:
(a) $2 \mathbf{u}+3 \mathbf{v}$;
(b) $\mathbf{u} \cdot(\mathbf{u}+\mathbf{v})$;
(c) The length of \mathbf{u}, \mathbf{v}.
(d) The side length of the triangle formed by \mathbf{u} and \mathbf{v} with two of the sides;
(e) The projection of \mathbf{u} along \mathbf{v};
(f) Decompose \mathbf{u} into a sum of two vectors \mathbf{u}_{\perp} and $\mathbf{u}_{\|}$with respect to \mathbf{v} (i.e. $\mathbf{u}=\mathbf{u}_{\perp}+\mathbf{u}_{\|}$and $\mathbf{u}_{\perp} \perp \mathbf{v}$ and $\mathbf{u}_{\|} \| \mathbf{v}$).
(g) The area of the triangle formed by \mathbf{u} and \mathbf{v} with two of the sides;
(h) Find all x, y and z such that the vector $(1,2,3)=x \mathbf{u}+y \mathbf{v}+z \mathbf{w}$;
(i) Find all vectors \mathbf{q} such that \mathbf{q} is perpendicular to both \mathbf{u} and \mathbf{v}.
(j) Write down the equation of the plane that is perpendicular to \mathbf{u} and passing through the origin $(0,0,0)$ in \mathbb{R}^{3}.
2. For the following matrix, determine whether they are in its row echelon form.
(a)

$$
\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

(c)

$$
\left(\begin{array}{lll}
0 & 3 & 4 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

(d)

$$
\left(\begin{array}{ccc}
2 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(e)

$$
\left(\begin{array}{llll}
2 & 3 & 0 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3. For each linear system in Ex. 1 in HW 1, write it in the matrix form $A \mathbf{x}=\mathbf{b}$. And for each matrix A, determine its reduced row echelon form.
