Homework 3, Math 3000

due on Feb 1, 2022

Before you start, please read the syllabus carefully.

1. For the following set, determine whether V forms a vector space:
(a) V is the set of continuous functions f on \mathbb{R} where $f(x+2 \pi)=f(x)$, where + and scalar multiplication is the usual addition of two functions and usual multiplication by a number.
(b) V is the set of real coefficients polynomials $f(x)$ with degree smaller or equal n and $f(0)=0$, where + and scalar multiplication are the usual addition of two polynomials and usual multiplication by a number.
(c) V is the set of matrices of A in $M_{m \times n}(\mathbb{R})$ with $\sum_{j} A_{1 j}=1$, where + and scalar multiplication are the usual addition of two matrices and usual multiplication of a matrix by a number.
(d) V is the set of matrices of A in $M_{n \times n}(\mathbb{R})$ with $A_{i i}=0$ for all i.
(e) V is the set of vectors in the form of $\mathbf{u}=(x, y, 1-x-y)$ in \mathbb{R}^{3}, where + and scalar multiplication is the usual addition and scalar multiplication of vectors.
2. For the set in Ex. 1, determine whether corresponding $W \subset V$ forms a subspace (i.e. W in 2 (a) is a subset in V in 1 (a)):
(a) W is the subset of continuous functions f with $f(x) \geq 0$.
(b) W is the subset of polynomials with $f^{\prime}(0)=0$.
(c) W is the set of matrices in V with $A_{11}=0$.
(d) W is the set of matrices in V with $A_{11}=0$.
(e) W is the set of vectors in the form of $\left(t, t^{2}, 1-t-t^{2}\right)$.
3. For $\mathbf{u}=(2,1,0)$ and $\mathbf{v}=(1,2,1)$, prove that:
(a) All vectors in \mathbb{R}^{3} that are perpendicular to both \mathbf{u} and \mathbf{v} form a subspace.
(b) All vectors that are linear combination of \mathbf{u} and \mathbf{v} form a subspace.
4. For $\mathbf{u}=(2,1,0), \mathbf{v}=(1,2,1), \mathbf{w}=(1,2,3)$, determine whether $\mathbf{u}, \mathbf{v}, \mathbf{w}$ span R^{3}.
5. For $\mathbf{u}=(1,1,0), \mathbf{v}=(0,1,1)$, $\mathbf{w}=(1,0,1)$, determine whether $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent.
6. Given a vector space V and two subspaces W_{1} and W_{2}, define $W_{1}+W_{2}$ to be $\{u+v \mid u \in$ $\left.W_{1}, v \in W_{2}\right\}$. Prove that $W_{1}+W_{2}$ is also a subspace in V.
