Homework 4, Math 3000

due on Feb 8, 2022

Before you start, please read the syllabus carefully

1. Determine whether the following list of vectors are: 1) linearly independent 2) spanning the vector space.
(a) $\{(1,0,0),(1,1,0),(1,1,1)\}$ in \mathbb{R}^{3}
(b) $\left\{1, x-1,(x-1)^{2},(x-1)^{3}\right\}$ in the vector space of polynomials with degree smaller or equal to 3
(c) $\{(1,1,-2),(1,-2,1),(-2,1,1)\}$ in the vector space $W:=\{(x, y, z) \mid x+y+z=0\}$
(d) $\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\right\}$ in the vector space $M_{2 \times 2}(\mathbb{R})$.
2. Give a basis of the following vector spaces and determine its dimension:
(a) $V:=\left\{A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{3}\right\}$ where

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

(b) $V:=\left\{\mathbf{x} \in \mathbb{R}^{4} \mid A \mathbf{x}=0\right\}$ where

$$
A=\left(\begin{array}{llll}
1 & 1 & 2 & 0 \\
2 & 0 & 1 & 1
\end{array}\right)
$$

(c) $V:=$ \{polynomials $\left.P(x) \mid P^{\prime}(1)=P^{\prime \prime}(1)=0, \operatorname{deg}(P(x)) \leq 4\right\}$.
(d) V is the intersection of planes $2 x+y+z=0$ and $x+2 y+z=0$ in \mathbb{R}^{3}.
(e) V is the set of symmetric matrices in $M_{2 \times 2}(\mathbb{R})$. (A is symmetric means $A_{i j}=A_{j i}$ for all i, j)

