Homework 5, Math 3000

due on Feb 15, 2022

Before you start, please read the syllabus carefully

1. For the following maps: 1) prove it is linear map; 2) write down the matrix for the following linear maps (under the prescribed basis of V).
(a) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ where $f((1,0,0))=(1,2,2,1)$, and $f((0,1,0))=(0,1,0,1)$ and $f((0,0,1))=$ $(1,0,1,0)$. (using the standard basis of \mathbb{R}^{n})
(b) $f: V \rightarrow V$ where V is the set of polynomials with degree smaller or equal to 3 and $f(P(t))=P^{\prime}(t)$ is the derivative map. (using the basis $1, t, t^{2}, t^{3}$)
(c) $f: V \rightarrow V$ where V is the set of polynomials with degree smaller or equal to 3 and $f(P(t))=2 \cdot P(t-1)$. (using the basis $\left.1, t, t^{2}, t^{3}\right)$
(d) $f: V \rightarrow \mathbb{R}$ where V is the set of polynomials with degree smaller or equal to 3 and $f(P(t))=P^{\prime}(1)$. (using the basis $\left.1, t, t^{2}, t^{3}\right)$
(e) $f:=V \rightarrow V$ where V is space of 2×2 matrices and $f(A)=A+A^{T}$. (using the standard basis $E_{i j}$ for matrices)
2. For each of the linear transformation in Ex. 1, compute the basis for the subspaces $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$ and determine their dimension.
