Homework 5, Math 3000

due on Feb 15, 2022

Before you start, please read the syllabus carefully.

- 1. For the following maps: 1) prove it is linear map; 2) write down the matrix for the following linear maps (under the prescribed basis of V).
 - (a) $f: \mathbb{R}^3 \to \mathbb{R}^4$ where f((1,0,0)) = (1,2,2,1), and f((0,1,0)) = (0,1,0,1) and f((0,0,1)) = (1,0,1,0). (using the standard basis of \mathbb{R}^n)
 - (b) $f: V \to V$ where V is the set of polynomials with degree smaller or equal to 3 and f(P(t)) = P'(t) is the derivative map. (using the basis $1, t, t^2, t^3$)
 - (c) $f: V \to V$ where V is the set of polynomials with degree smaller or equal to 3 and $f(P(t)) = 2 \cdot P(t-1)$. (using the basis $1, t, t^2, t^3$)
 - (d) $f: V \to \mathbb{R}$ where V is the set of polynomials with degree smaller or equal to 3 and f(P(t)) = P'(1). (using the basis $1, t, t^2, t^3$)
 - (e) $f := V \to V$ where V is space of 2×2 matrices and $f(A) = A + A^T$. (using the standard basis E_{ij} for matrices)
- 2. For each of the linear transformation in Ex. 1, compute the basis for the subspaces Ker(f) and Im(f) and determine their dimension.