Homework 6, Math 3000

due on March 1, 2022

Before you start, please read the syllabus carefully.

1. Let

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right), \qquad B = \left(\begin{array}{rrrr} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{array}\right).$$

Compute the following matrix operations

- (a) AB
- (b) A^{-1}
- (c) B^{-1} (Does this exist?)
- (d) $B^{-1}A^{-1}$ (Does this exist?)
- (e) A^2, B^2
- (f) A^3, B^2
- (g) $(A+B)^{-1}$
- 2. The standard basis for \mathbb{R}^3 is $E = \{(1,0,0), (0,1,0), (0,0,1)\}$. The new basis is $E' = \{(1,0,0), (1,1,0), (1,1,1)\}$.
 - (a) Write down the base change matrix from E to E'.
 - (b) Let T_1 be a linear map represented by A (see Ex. 1) under basis E, find the matrix representing T_1 under basis E'.
 - (c) Let T_2 be a linear map represented by B (see Ex. 1) under basis E, find the matrix representing T_2 under basis E'.
 - (d) Let $T_3 := T_1 \circ T_2 : \mathbb{R}^3 \to \mathbb{R}^3$ be the composition of T_1 and T_2 , find the matrix representing T_3 under basis E and E'.
- 3. Let V be the vector space of polynomials with degree ≤ 3 . The standard basis for V is $E = \{1, t, t^2, t^3\}$. The new basis is $E' = \{1, (t-1), (t-1)^2, (t-1)^3\}$.
 - (a) Write down the matrix for the linear map of derivative using basis E.
 - (b) Write down the base change matrix from E to E'.
 - (c) Write down the matrix for the linear map of derivative using basis E'.