Homework 6, Math 3000

due on March 1, 2022

Before you start, please read the syllabus carefully.

1. Let

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right)
$$

Compute the following matrix operations
(a) $A B$
(b) A^{-1}
(c) B^{-1} (Does this exist?)
(d) $B^{-1} A^{-1}$ (Does this exist?)
(e) A^{2}, B^{2}
(f) A^{3}, B^{2}
(g) $(A+B)^{-1}$
2. The standard basis for \mathbb{R}^{3} is $E=\{(1,0,0),(0,1,0),(0,0,1)\}$. The new basis is $E^{\prime}=$ $\{(1,0,0),(1,1,0),(1,1,1)\}$.
(a) Write down the base change matrix from E to E^{\prime}.
(b) Let T_{1} be a linear map represented by A (see Ex. 1) under basis E, find the matrix representing T_{1} under basis E^{\prime}.
(c) Let T_{2} be a linear map represented by B (see Ex. 1) under basis E, find the matrix representing T_{2} under basis E^{\prime}.
(d) Let $T_{3}:=T_{1} \circ T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the composition of T_{1} and T_{2}, find the matrix representing T_{3} under basis E and E^{\prime}.
3. Let V be the vector space of polynomials with degree ≤ 3. The standard basis for V is $E=\left\{1, t, t^{2}, t^{3}\right\}$. The new basis is $E^{\prime}=\left\{1,(t-1),(t-1)^{2},(t-1)^{3}\right\}$.
(a) Write down the matrix for the linear map of derivative using basis E.
(b) Write down the base change matrix from E to E^{\prime}.
(c) Write down the matrix for the linear map of derivative using basis E^{\prime}.

