Homework 8, Math 3000

due on March 22, 2022

Before you start, please read the syllabus carefully.

- 1. Compute the determinant of the following matrices.
 - (a) $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & 1 \\ 0 & 3 & 1 \end{pmatrix}$
 - $A = \begin{pmatrix} 0 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix}$

(c)

(b)

(d)

$$A = \left(\begin{array}{rrrrr} 1 & 2 & 0 & 0\\ 2 & 1 & 0 & 0\\ 0 & 0 & 1 & b\\ 0 & 0 & a & 1 \end{array}\right)$$

2. Recall the formula for determinant of $A \in M_{n \times n}(\mathbb{R})$

$$\det(A) := \sum_{P} a_{i_1,1} a_{i_2,2} \cdots a_{i_n,n} \cdot \operatorname{sgn}(P),$$

where the summation is over all permutations of $\{1, 2, \dots, n\}$. For example, when n = 3, we have altogether 6 ways of permuting $\{1, 2, 3\}$, e.g. (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) or (3, 2, 1).

- (a) For each permutation, determine its sign. (It is +1 if you need to do even times of swapping to go back to (1, 2, 3), is -1 if you need to do odd times).
- (b) For n = 4, write down all possible permutations and determine their signs. How many permutations altogether?

(c) Use this formula to prove that for any matrix 4×4 matrix A in the form of

$$A = \left(\begin{array}{cc} A_1 & 0\\ 0 & A_2 \end{array}\right),$$

where A_1 and A_2 are both 2×2 , we have $\det(A) = \det(A_1) \det(A_2)$.

- 3. Prove that if $A \in M_{n \times n}(\mathbb{R})$ is in the row echelon form, then $det(A) = \prod_i a_{ii}$.
- 4. Prove that if $B = C^{-1}AC$, then $\det(B \lambda I) = \det(A \lambda I)$.