Homework 8, Math 3000

due on March 22, 2022

Before you start, please read the syllabus carefully.

1. Compute the determinant of the following matrices.
(a)

$$
A=\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & 1 \\
0 & 3 & 1
\end{array}\right)
$$

(b)

$$
A=\left(\begin{array}{llll}
0 & 2 & 3 & 4 \\
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right)
$$

(c)

$$
A=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

(d)

$$
A=\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 1 & b \\
0 & 0 & a & 1
\end{array}\right)
$$

2. Recall the formula for determinant of $A \in M_{n \times n}(\mathbb{R})$

$$
\operatorname{det}(A):=\sum_{P} a_{i_{1}, 1} a_{i_{2}, 2} \cdots a_{i_{n}, n} \cdot \operatorname{sgn}(P)
$$

where the summation is over all permutations of $\{1,2, \cdots, n\}$. For example, when $n=3$, we have altogether 6 ways of permuting $\{1,2,3\}$, e.g. $(1,2,3),(1,3,2),(2,1,3),(2,3,1)$, $(3,1,2)$ or $(3,2,1)$.
(a) For each permutation, determine its sign. (It is +1 if you need to do even times of swapping to go back to $(1,2,3)$, is -1 if you need to do odd times).
(b) For $n=4$, write down all possible permutations and determine their signs. How many permutations altogether?
(c) Use this formula to prove that for any matrix 4×4 matrix A in the form of

$$
A=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)
$$

where A_{1} and A_{2} are both 2×2, we have $\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right)$.
3. Prove that if $A \in M_{n \times n}(\mathbb{R})$ is in the row echelon form, then $\operatorname{det}(A)=\prod_{i} a_{i i}$.
4. Prove that if $B=C^{-1} A C$, then $\operatorname{det}(B-\lambda I)=\operatorname{det}(A-\lambda I)$.

