Homework 9, Math 3000

due on April 5, 2022

Before you start, please read the syllabus carefully.

1. Apply Gram-Schmidt algorithm to find an orthonormal set of vectors from the following set of vectors.
(a) $\{(0,1,0),(1,2,1),(2,1,2)\}$
(b) $\{(0,1,0,1),(1,0,1,0),(1,1,1,1)\}$
2. Find an orthogonal matrix C such that $C^{-1} A C$ is diagonal for the following matrices:
(a)

$$
A=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right)
$$

(b)

$$
A=\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(c)

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

3. Define trace of a matrix to be $\sum_{i} A_{i i}$, denote it to be $\operatorname{Tr}(A)$.
(a) Prove that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.
(b) Show that if A is similar to B (i.e. $C^{-1} A C=B$ for some C), then $\operatorname{Tr}(A)=\operatorname{Tr}(B)$.
4. Prove that if A is similar to B, then $\sum_{n} a_{n} A^{n}=0$ if and only if $\sum_{n} a_{n} B^{n}=0$.
5. Let V be a vector space. Let $S_{i}:=\left\{v_{i 1}, \cdots, v_{i n_{i}}\right\}$ be set of vectors in V, for $i=1, \cdots, m$. Suppose for all i, S_{i} is linearly independent, and $\left\{w_{1}, \cdots, w_{m}\right\}$ is linearly independent for any $w_{i} \in \operatorname{span}\left(S_{i}\right)$. Prove that $S_{1} \cup \cdots \cup S_{m}$ is linearly independent.
6. Consider $M \in M_{2 \times 2}(\mathbb{R})$ with

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(a) Write down the characteristic polynomial f of M.
(b) If $4 b c=-(a-d)^{2}$, then prove that M has two different eigenvalues.
(c) If the characteristic polynomial for M_{1} and M_{2} is the same, and both satisfy $4 b c=$ $-(a-d)^{2}$, then show that M_{1} is similar to M_{2}.
(d) Construct one example where M_{1} and M_{2} have the same characteristic polynomial, but M_{1} is not similar to M_{2}.
(e) Suppose the polynomial for M is $f(\lambda)=\sum_{n} a_{n} \lambda^{n}$. Prove that $\sum_{n} a_{n} M^{n}=0$.
7. Determine the eigenvalue and eigenvectors for the following matrix (possibly use complex numbers \mathbb{C})
(a)

$$
A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

(b)

$$
A=\left(\begin{array}{cc}
-1 & -2 \\
1 & 0
\end{array}\right)
$$

