Homework 9, Math 3000

due on April 5, 2022

Before you start, please read the syllabus carefully.

- 1. Apply Gram-Schmidt algorithm to find an orthonormal set of vectors from the following set of vectors.
 - (a) $\{(0,1,0), (1,2,1), (2,1,2)\}$
 - (b) $\{(0,1,0,1), (1,0,1,0), (1,1,1,1)\}$
- 2. Find an orthogonal matrix C such that $C^{-1}AC$ is diagonal for the following matrices:
 - (a)

$$A = \left(\begin{array}{rrr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

$$A = \left(\begin{array}{rrrr} 1 & 3 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

(c)

$$A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

- 3. Define *trace* of a matrix to be $\sum_{i} A_{ii}$, denote it to be Tr(A).
 - (a) Prove that Tr(AB) = Tr(BA).
 - (b) Show that if A is similar to B (i.e. $C^{-1}AC = B$ for some C), then Tr(A) = Tr(B).
- 4. Prove that if A is similar to B, then $\sum_{n} a_n A^n = 0$ if and only if $\sum_{n} a_n B^n = 0$.
- 5. Let V be a vector space. Let $S_i := \{v_{i1}, \dots, v_{in_i}\}$ be set of vectors in V, for $i = 1, \dots, m$. Suppose for all i, S_i is linearly independent, and $\{w_1, \dots, w_m\}$ is linearly independent for any $w_i \in \text{span}(S_i)$. Prove that $S_1 \cup \dots \cup S_m$ is linearly independent.
- 6. Consider $M \in M_{2 \times 2}(\mathbb{R})$ with

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

- (a) Write down the characteristic polynomial f of M.
- (b) If $4bc = -(a d)^2$, then prove that M has two different eigenvalues.

- (c) If the characteristic polynomial for M_1 and M_2 is the same, and both satisfy $4bc = -(a-d)^2$, then show that M_1 is similar to M_2 .
- (d) Construct one example where M_1 and M_2 have the same characteristic polynomial, but M_1 is not similar to M_2 .
- (e) Suppose the polynomial for M is $f(\lambda) = \sum_n a_n \lambda^n$. Prove that $\sum_n a_n M^n = 0$.
- 7. Determine the eigenvalue and eigenvectors for the following matrix (possibly use complex numbers \mathbb{C})

$$A = \left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right)$$

(b)

$$A = \left(\begin{array}{rrr} -1 & -2 \\ 1 & 0 \end{array}\right)$$